Early Identification of Plant Stress in Hyperspectral Images
نویسندگان
چکیده
In recent years, remarkable results have been achieved in the early detection of weeds, plant diseases and insect pests in crops. These achievements are related both to the development of non-invasive, high resolution optical sensors and data analysis methods that are able to cope with the resolution, size and complexity of the signals from these sensors. Especially hyperspectral cameras are capable sensors for the early detection of stress even before visible sympotoms become apparent. Their interpretation with regard to data amount, noise factors and their unknown effects is challenging. In this study, the the focus lies on the early detection of drought stress in barley plants based on hyperspectral images. For the specific task of representing and predicting the development of drought stress different model types are compared. It turns out that the linear ordinal classification combines both, high precision and low model complexity. Prediction results for an drought stress experiment over time are presented.
منابع مشابه
Improvement of the Classification of Hyperspectral images by Applying a Novel Method for Estimating Reference Reflectance Spectra
Hyperspectral image containing high spectral information has a large number of narrow spectral bands over a continuous spectral range. This allows the identification and recognition of materials and objects based on the comparison of the spectral reflectance of each of them in different wavelengths. Hence, hyperspectral image in the generation of land cover maps can be very efficient. In the hy...
متن کاملHyperspectral Image Analysis for Plant Stress Detection
Plant stress significantly reduces plant productivity. Automated on-the-go mapping of plant stress allows for timely intervention and mitigation of the problem before critical thresholds are exceeded, thereby maximizing productivity. A hyperspectral camera analyzed the spectral signature of plant leaves to identify the plant water stress. Five different levels of water treatment were created on...
متن کاملField Imaging Spectroscopy of Beech Seedlings under Dryness Stress
In order to monitor dryness stress under controlled conditions, we set up an experiment with beech seedlings in plant pots and built a platform for observing the seedlings with field imaging spectroscopy. This serves as a preparation for multi-temporal hyperspectral airand space-borne data expected to be available in coming years. Half of the trees were watered throughout the year; the other ha...
متن کاملImproving the RX Anomaly Detection Algorithm for Hyperspectral Images using FFT
Anomaly Detection (AD) has recently become an important application of target detection in hyperspectral images. The Reed-Xialoi (RX) is the most widely used AD algorithm that suffers from “small sample size” problem. The best solution for this problem is to use Dimensionality Reduction (DR) techniques as a pre-processing step for RX detector. Using this method not only improves the detection p...
متن کاملFeature reduction of hyperspectral images: Discriminant analysis and the first principal component
When the number of training samples is limited, feature reduction plays an important role in classification of hyperspectral images. In this paper, we propose a supervised feature extraction method based on discriminant analysis (DA) which uses the first principal component (PC1) to weight the scatter matrices. The proposed method, called DA-PC1, copes with the small sample size problem and has...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015